Understanding the 3D world from 2D images involves more than detection and segmentation of the objects within the scene. It also includes the interpretation of the structure and arrangement of the scene elements. Such understanding is often rooted in recognizing the physical world and its limitations, and in prior knowledge as to how similar typical scenes are arranged. In this research we pose a new challenge for neural network (or other) scene understanding algorithms - can they distinguish between plausible and implausible scenes? Plausibility can be defined both in terms of physical properties and in terms of functional and typical arrangements. Hence, we define plausibility as the probability of encountering a given scene in the real physical world. We build a dataset of synthetic images containing both plausible and implausible scenes, and test the success of various vision models in the task of recognizing and understanding plausibility.
translated by 谷歌翻译
Recent advances in deep learning techniques and applications have revolutionized artistic creation and manipulation in many domains (text, images, music); however, fonts have not yet been integrated with deep learning architectures in a manner that supports their multi-scale nature. In this work we aim to bridge this gap, proposing a network architecture capable of rasterizing glyphs in multiple sizes, potentially paving the way for easy and accessible creation and manipulation of fonts.
translated by 谷歌翻译
在张等人提出的意义上,我们研究了产生$(\ delta,\ epsilon)$固定点的甲骨复杂性。[2020]。虽然存在无尺寸的随机算法用于在$ \ widetilde {o}(1/\ delta \ epsilon^3)$一阶Oracle调用中产生此类点算法。另一方面,我们指出,可以将此速率取代以获得平滑函数,仅对对数依赖平滑度参数。此外,我们为此任务建立了几个下限,这些界限适用于任何随机算法,无论有或没有凸度。最后,我们展示了如何找到$(\ delta,\ epsilon)$ - 固定点的收敛速率,以防函数为凸,我们通过证明一般没有有限的时间算法可以使用点来激励这种设置凸功能的小亚级别也小。
translated by 谷歌翻译
了解神经网络记住培训数据是一个有趣的问题,具有实践和理论的含义。在本文中,我们表明,在某些情况下,实际上可以从训练有素的神经网络分类器的参数中重建训练数据的很大一部分。我们提出了一种新颖的重建方案,该方案源于有关基于梯度方法的训练神经网络中隐性偏见的最新理论结果。据我们所知,我们的结果是第一个表明从训练有素的神经网络分类器中重建大部分实际培训样本的结果是可以的。这对隐私有负面影响,因为它可以用作揭示敏感培训数据的攻击。我们在一些标准的计算机视觉数据集上演示了二进制MLP分类器的方法。
translated by 谷歌翻译
我们研究神经网络的基于规范的统一收敛范围,旨在密切理解它们如何受到规范约束的架构和类型的影响,对于简单的标量价值一类隐藏的一层网络,并在其中界定了输入。欧几里得规范。我们首先证明,通常,控制隐藏层重量矩阵的光谱规范不足以获得均匀的收敛保证(与网络宽度无关),而更强的Frobenius Norm Control是足够的,扩展并改善了以前的工作。在证明构造中,我们识别和分析了两个重要的设置,在这些设置中(可能令人惊讶)仅光谱规范控制就足够了:首先,当网络的激活函数足够平滑时(结果扩展到更深的网络);其次,对于某些类型的卷积网络。在后一种情况下,我们研究样品复杂性如何受到参数的影响,例如斑块之间的重叠量和斑块的总数。
translated by 谷歌翻译
体验重播\ CITEP {Lin1993ReInforcement,Mnih2015human}是一种广泛使用的技术,可以实现有效利用数据和R1算法中的性能提高。在经验重放中,过去的转换存储在内存缓冲区中并在学习期间重新使用。在以前的作品中提出了从重播缓冲区中提出了用于从重放缓冲区的采样方案的各种建议,试图最佳选择这些经验,这些经历将有最大贡献的融合到最佳政策。在这里,我们对重播采样方案提供一些条件,该方案将确保收敛,重点是表格设置中的众所周知的Q学习算法。在为收敛建立充足的条件后,我们向建议以偏见方式重播的经验略有不同的用法作为改变所产生的策略的属性的方法。我们启动了对体验重放的严格研究作为控制和修改生成策略的属性的工具。特别是,我们表明使用适当的偏置采样方案可以允许我们实现\ emph {Safe}策略。我们认为,使用体验重放作为偏置机制,允许以可取的方式控制所产生的政策是许多应用程序具有有希望的潜力的想法。
translated by 谷歌翻译
RL常用的启发式是经验重放(例如〜\ CiteT {Lin1993ReInforcement,Mnih2015human}),其中一个学习者商店和重新使用过去的轨迹,好像它们在线采样。在这项工作中,我们在表格Q-Learning的设置中启动了对这种启发式的严格研究。我们提供了融合率保证,并讨论如何与Q-Leature的融合相比,这取决于诸如重播迭代的频率和数量的重要参数。我们还通过引入和分析简单的MDP,提供理论上的证据显示我们可能期待这一启发式的启发式态度。最后,我们提供了一些实验来支持我们的理论发现。
translated by 谷歌翻译
最近,在学习没有更换SGD的收敛率的情况下,有很多兴趣,并证明它在最坏情况下比更换SGD更快。然而,已知的下限忽略了问题的几何形状,包括其条件号,而上限明确取决于它。也许令人惊讶的是,我们证明,当考虑条件号时,没有替换SGD \ EMPH {没有}在最坏情况下,除非是时期的数量(通过数据来说)大于条件号。由于机器学习和其他领域的许多问题都没有条件并涉及大型数据集,这表明没有替换不一定改善用于现实迭代预算的更换采样。我们通过提供具有紧密(最多日志因子)的新下限和上限来展示这一点,用于致通二次术语的二次问题,精确地量化了对问题参数的依赖性。
translated by 谷歌翻译
众所周知,给定顺滑,界限 - 下面,并且可能的非透露函数,标准梯度的方法可以找到$ \ epsilon $ -stationary积分(渐变范围小于$ \ epsilon $)$ \ mathcal {O}(1 / \ epsilon ^ 2)$迭代。然而,许多重要的非渗透优化问题,例如与培训现代神经网络相关的问题,本质上是不平衡的,使这些结果不适用。在本文中,我们研究了来自Oracle复杂性视点的非透射性优化,其中假设算法仅向各个点处的函数提供访问。我们提供两个主要结果:首先,我们考虑越近$ \ epsilon $ -storationary积分的问题。这也许是找到$ \ epsilon $ -storationary积分的最自然的放松,这在非对象案例中是不可能的。我们证明,对于任何距离和epsilon $小于某些常数,无法有效地实现这种轻松的目标。我们的第二次结果涉及通过减少到平滑的优化来解决非光度非渗透优化的可能性:即,在光滑的近似值对目标函数的平滑近似下应用平滑的优化方法。对于这种方法,我们在温和的假设下证明了oracle复杂性和平滑度之间的固有权衡:一方面,可以非常有效地平滑非光滑非凸函数(例如,通过随机平滑),但具有尺寸依赖性因子在平滑度参数中,在插入标准平滑优化方法时,这会强烈影响迭代复杂性。另一方面,可以用合适的平滑方法消除这些尺寸因子,而是仅通过使平滑过程的Oracle复杂性呈指数大。
translated by 谷歌翻译
在此简短的注意事项中,我们提供了关于学习线性预测器相对于平方损耗的线性预测器的示例复杂性。我们的重点是在不可知论中,在数据分布上没有假设。这与标准结果形成对比,文献中的分布假设,参见特定的参数设置,或使用其他性能措施。
translated by 谷歌翻译